1 (100 PTs.) Arrow-Debreu Model (Fairness + PO)
Recollect the linear Arrow-Debreu market model. There are n agents, and m divisible goods. Agent i has a utility of $u_{i j}$ for one unit of good j. Each agent i comes with an endowment of $w_{i j}$ units of good j. A price vector p and an allocation x is at an equilirbium, iff,

- All items are sold, i.e., $\sum_{i \in[n]} x_{i j}=1$, for all $j \in[m]$.
- All agents spend $\sum_{j \in[m]} w_{i j} p_{j}$ units of money on bang-per buck goods, i.e., $x_{i j}>0$ only if $u_{i j} / p_{j} \geq u_{i k} / p_{k}$ for all $k \in[m]$, and $\sum_{j \in[m]} x_{i j} p_{j}=\sum_{j \in[m]} w_{i j} p_{j}$.

Prove that, $\langle p, x\rangle$ satisfies,

- Weighted Envy-Freeness: For all agents i, and i^{\prime}, we have $\frac{u_{i}\left(x_{i}\right)}{\sum_{j \in[m] w_{i j} p_{j}}} \geq \frac{u_{i}\left(x_{i^{\prime}}\right)}{\sum_{j \in[m] w_{i^{\prime}} p_{j}}} .{ }^{1}$
- Pareto optimal: There exists no other allocation y, such that $u_{i}\left(y_{i}\right) \geq u_{i}\left(x_{i}\right)$ for all $i \in[n]$ with at least one strict inequality.

[^0]Most of the flow based algorithms in market equilibrium involve computation on the equality network N_{p}. In worst case, N_{p} can contain $\mathcal{O}(n m)$ edges (n is the number of agents and m is the number of goods). Often times, this could be very expensive. Sparse equality networks facilitate faster algorithms. In this exercise, we investigate when equality networks can be sparse.
2.A. (75 PTS.) Let $C=i_{1}-j_{1}-i_{2}-j_{2}-\cdots-i_{k}-j_{k}-i_{1}$ be a cycle in the equality network N_{p}. Prove that $\prod_{\ell \in[k]} u_{i_{\ell+1}, j_{\ell}}=\prod_{\ell \in[k]} u_{i_{\ell}, j_{\ell}}$ (interpret $k+1$ as 1).
2.B. (25 PTS.) Choose an infinitesimally small $\varepsilon \geq 0$. Perturb every $u_{i j}$ to $u_{i j}^{\prime}=u_{i j} q_{i j}^{\varepsilon}$ where $q_{i j}$'s are distinct primes. Prove that any prices, the equality network, defined w.r.t. the perturbed utilities is always acyclic.

3 (100 PTS.) Eliminating Path Violators

Recollect the market-based algorithm for computing EF1 + PO. Recall that in the allocation update phase, we eliminated all path violators. Let i_{0}^{t} be a least spender at time t, and i_{ℓ}^{t} be a closest path violator. Let $i_{0}^{t} \rightarrow j_{1}^{t} \rightarrow i_{1}^{t} \rightarrow j_{2}^{t} \rightarrow i_{2}^{t} \ldots \rightarrow j_{\ell}^{t} \rightarrow i_{\ell}^{t}$ be the alternating shortest path from i_{0}^{t} to i_{ℓ}^{t}, with the blue edges indicating MBB edges and black edges indicating allocation edges. Recall that in the allocation update phase, as long as i_{ℓ}^{t} is a path-violator, we transfer g_{ℓ}^{t} from i_{ℓ}^{t} to $i_{\ell-1}^{t}$ and decrement ℓ. Once this cascade of transfers stops along the current alternating path, we again check for new path-violators and continue the same procedure. In this exercise, we want to show that we can have at most polynomial number of such consecutive transfers until there is a change in the identity of the least spender or all path violators are eliminated. We will make use of the following notation to prove our claim. For each agent i reachable from a least spender i_{0}^{t} at time t via an alternating path,

- define level ${ }^{t}(i)$ to the half the length of the shortest alternating path from i_{0}^{t} to i_{k}^{t} (note that alternating path lengths are always even). For all agents i not reachable from i_{0}^{t} at time t, define level ${ }^{t}(i)=n$.
- We say that g is critical to agent i at time t, if $g \in x_{i}^{t}$ and there is an alternating shortest path from i_{0}^{t} to i that also contains g. Define G_{i}^{t} to be the set of critical goods of agent i at time t.

Prove that with each tansfer operation (as elaborated above), the value of $\sum_{i \in[n]}\left(m\left(n-\right.\right.$ level $\left.^{t}(i)\right)+$ $\left.G_{i}^{t}\right)$ decreases. Use this to show that after poly (n, m) many transfers, either the identity of the least spender changes or all path violators are eliminated.

[^0]: ${ }^{1}$ Recall that $u_{i}\left(x_{i}\right)=\sum_{j \in[m]} u_{i j} x_{i j}$ as we are in the linear model.

